cube root - определение. Что такое cube root
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cube root - определение

NUMBER WHICH PRODUCES A GIVEN NUMBER WHEN CUBED
Cubic root; Cube Root; Cube roots; Third root; ؆; Numerical methods for calculating cube roots
  • 1=''x'' = 0}} this graph has a [[vertical tangent]].
  • A002580}}).

cube root         
n. to find, extract the cube root
Cube root         
In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots.
cube root         
(cube roots)
The cube root of a number is another number that makes the first number when it is multiplied by itself twice. For example, the cube root of 8 is 2.
N-COUNT: usu sing, the N of n

Википедия

Cube root

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted 8 3 {\displaystyle {\sqrt[{3}]{8}}} , is 2, because 23 = 8, while the other cube roots of 8 are 1 + i 3 {\displaystyle -1+i{\sqrt {3}}} and 1 i 3 {\displaystyle -1-i{\sqrt {3}}} . The three cube roots of −27i are

3 i , 3 3 2 3 2 i , and 3 3 2 3 2 i . {\displaystyle 3i,\quad {\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i,\quad {\text{and}}\quad -{\frac {3{\sqrt {3}}}{2}}-{\frac {3}{2}}i.}

In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the principal cube root, denoted with the radical sign     3 . {\displaystyle {\sqrt[{3}]{~^{~}}}.} The cube root is the inverse function of the cube function if considering only real numbers, but not if considering also complex numbers: although one has always ( x 3 ) 3 = x , {\displaystyle \left({\sqrt[{3}]{x}}\right)^{3}=x,} the cube of a nonzero number has more than one complex cube root and its principal cube root may not be the number that was cubed. For example, ( 1 + i 3 ) 3 = 8 {\displaystyle (-1+i{\sqrt {3}})^{3}=8} , but 8 3 = 2. {\displaystyle {\sqrt[{3}]{8}}=2.}